No Image

Узи принцип работы

СОДЕРЖАНИЕ
0 просмотров
10 марта 2020

Ультразвуковая диагностическая система востребована в современной медицине. Она широко используется в учреждениях различного уровня, дает точные и достоверные результаты.

В зависимости от качества получаемой информации аппараты можно разделить на несколько основных групп:

  • простые сканеры. Это, как правило, мобильные приборы, которые имеют не более 16 каналов приема-передачи;
  • аппараты среднего класса. Обычно имеют 32 канала;
  • УЗИ-оборудование с повышенным классом возможностей. Большинство таких сканеров обладает функцией цифрового допплеровского картирования и имеет 64 канала приема-передачи;
  • экспертные приборы. Имеют от 64 до 512 каналов, оснащаются цветовым допплером. Также называются цифровыми системами или платформами.

Вышеперечисленное оборудование имеет достаточно сложную конструкцию, которая состоит из датчика, центрального процессора и дисплея, а также клавиатуры и курсора, принтера и дисковых хранилищ. В нее входят и другие элементы. Так, ультразвуковой датчик — это специальный детектор, или преобразователь, при помощи которого формируются и передаются звуковые волны. Импульсный датчик управления меняет амплитуду, длительность и частоту импульсов, излучаемых преобразователем. Центральный компьютер производит расчеты и имеет электрический источник питания, а на дисплее отображаются все данные. Информация вводится при помощи клавиатуры и дисплея. Принтер необходим для распечатки полученных изображений.

Принципы работы

При помощи датчиков аппараты передают в человеческое тело звуковые импульсы, которые распределяются между тканями, а часть волн возвращается обратно к преобразователю. Полученные данные направляются в центральный процессор, который является главной частью системы. Компьютер обрабатывает информацию, преобразует ее в изображение и выводит на экран. Расстояние до органа или ткани процессор определяет по скорости распространения звука.

Сам датчик может принимать и передавать миллионы сигналов в секунду. При помощи элементов управления врач-диагност имеет возможность устанавливать и менять частоту и длительность импульсов, а также режимы сканирования.

Ультразвук — это акустические волны, колебание которых не может уловить и воспринять человеческое ухо.

Первые исследования в данной области были совершены в XVII столетии и основывались на наблюдении за летучими мышами. Им завязывали глаза или уши, изучали их методы ориентирования в пространстве. Во время полета данные представители фауны испускают небольшие импульсы волн ультразвука, который отражается от объектов и возвращается в ухо зверька (феномен эхо). Данный отраженный сигнал позволяет мышам легко ориентироваться в пространстве, определять расстояние до препятствия, а также узнавать точное его местоположение.

Все эти наблюдения и исследования привели к созданию множества современных технических приспособлений, таких как:

аппарат для ультразвуковой диагностики.

УЗИ-оборудование, используемое в медицинских целях испускает ультразвуковые волны, и воспринимает обратный сигнал. Локализация отражающей структуры происходит путем замера времени между подачей УЗ и получением ответа.

Звуковая волна

Механические изменения, существующие в пространстве, называются звуковыми волнами. Их излучение по большей части имеет зависимость от среды, в которой они излучаются. Возникновение волн возможно только при взаимодействии материальных предметов, поэтому в вакууме не образуется излучение.

Подразделяются звуковые волны на два основных вида:

В первом случае отдельные частицы среды колеблются вдоль направления волны (характерно для газов, жидкостей, мягких тканей организма). Во второй разновидности отдельные элементы находятся в плоскости перпендикулярной (90о) по отношению к звуковой волне (кости, другие твердые тела).

При прохождении отдельных частей по продольной волне образуется различное давление, связанное с плотностью и удаленностью элементов друг от друга. Ультразвук способен образовывать зоны повышенного и низкого давления, которое называют переменным.

Характеристики звуковых волн

Основными характеристиками для звуковой волны являются:

амплитуда (А). Определяет максимальное давление звука;

Читайте также:  Программа лечения гепатита с в украине

частота (v). Количество колебаний в секунду. Измеряется в Герцах (Гц). Современные УЗИ-аппаратура обладают амплитудой 1-50 МГц;

скорость распространения (с).

Основное влияние оказывают давление и температурный режим, однако при физиологическом обследовании им можно пренебречь.

Скорость излучения звука обуславливается плотностью среды, так например, в мягких тканях она составляет 1500 м/с.

В медицинских обследованиях используется специальная формула, позволяющая вычислить длину волны. Она помогает обнаружить минимальные габариты анатомических структур. Если они будут меньше, то различить их не удастся.

Длина волны в УЗИ-обследованиях дает возможность получить изображение, по которому происходит оценка состояния исследуемого объекта. Детализация отображения зависит от диапазона волны, чем выше, тем лучше виден предмет анализа. Но с увеличением параметра «v», снижается проникающая возможность и доступная глубина для исследований.

Получение ультразвука

Ультразвук, используемый в медицине, основан на пьезоэлектрическом воздействии. Так называется возможность кристаллов и керамики искажаться при воздействии на них электрического напряжения. Когда это происходит, возникают УЗ-волны. Данный эффект имеет обратную связь, когда пьезоэлектрический кристалл вызывает напряжение, которое можно замерить.

Когда образовывается волна ультразвука, она начинает свое движение в соединяющей среде, позволяющей увеличить проходимость между УЗ и предметом анализа. В медицинских обследованиях данным сопроводителем является УЗ-гель.

Строение Узи-датчика

Источник изменений ультразвука изготавливается из пьезоэлектрических компонентов, как правило, керамики и снабжается электроконтактами на передней и задней гранях. Лицевая часть всегда обращается к пациенту и контактирует с соединяющей средой для улучшения проходимости сигнала. Противоположная сторона покрыта слоем, поглощающим излучение, не позволяющим ему распространяться в другие стороны.

Благодаря своей конструкции и повышенному параметру чувствительности, датчик легко поддается различным настройкам, а также позволяет получить фокусировку на определенную глубину. Существуют три основные зоны фокуса:

ближняя. Примыкает к датчику. Волны звука накладываются друг на друга, и создается неоднородное поле и искаженное изображение. Наиболее целостная среда отображается в виде затемненных или осветленных полос. Подобный метод не подходит для проведения анализа изображения, однако его можно улучшить путем настройки датчика или же с использованием водного буфера;

фокусная. Дает возможность получить четкую картинку исследуемого объекта, поскольку обладает самым маленьким диаметром ультразвукового луча и высокой интенсивностью волны;

дальняя. Характеризуется рассеиванием УЗ луча с ослаблением интенсивности и разрешающей способности.

Разрешающая способность (оптическая или акустическая) является одной из главных характеристик, демонстрирующих эффективность анализа. В ее основе лежит расстояние между двумя отображаемыми объектами.

Повышение данного параметра будет полезно в случае существенных акустических различий между объектом анализа и другими тканями. Для проведения исследований можно использовать один (или несколько) вариантов разрешающей способности:

аксиальный. Увеличивает размер длины волны. Например, если датчик имеет уровень частоты в 3,5 МГц, то ткани толщиной в 0,5 мм при высокой степени контрастности будут выглядеть, как отдельные объекты;

литеральный. Основывается на ширине ультразвукового луча, фокусировании и глубине анализа. Разрешающая способность в этом варианте варьируется, однако в фокусном пространстве может равняться 4-5 волновым длинам, что в 2 или 3 раза ослабленнее аксиального;

сагиттальный. Имеет прямую зависимость от ширины потока в плоскости, перпендикулярной пространству исследования.

Если медицинскому работнику необходимо получить точный анализ анатомического строения, то необходимо поочередно проводить анализ в нескольких плоскостях (от аксиального к литеральному и от литерального к сагиттальному). Ознакомиться с внешним видом и характеристиками УЗИ аппаратов можно здесь.

Если речь идет о техническом обслуживании, ремонте или работе на ультразвуковом оборудовании, в первую очередь необходимо понимать физические основы процессов, с которыми придется иметь дело. Конечно, как и в каждом деле, здесь есть очень много нюансов и тонкостей, но мы предлагаем Вам в первую очередь рассмотреть самую суть процесса. В данной статье мы коснемся следующих вопросов:

  1. Что такое ультразвук, каковы его характеристики и параметры
  2. Формирование ультразвука в современной технике на основе пьезокерамики
  3. Принципы работы УЗИ: цепь преобразований электрической энергии в энергию ультразвука и обратно.
  4. Основы формирования изображения на дисплее УЗИ-аппарата.
Читайте также:  Вобэнзим для зачатия

Обязательно посмотрите наше видео о том, как работает УЗИ

Наша основная задача — разобраться в том, что такое ультразвук, и какие его свойства помогают нам в современных медицинских исследованиях.

О звуке.

Мы знаем, что частоты от 16 Гц до 18 000 Гц, которые способен воспринимать слуховой аппарат человека, принято называть звуковыми. Но в мире также много звуков, которые мы услышать не можем, поскольку они ниже или выше диапазона доступных нам частот: это инфра- и ультра звук соответственно.

Звук имеет волновую природу, то есть все существующие в нашей вселенной звуки — волны, как, в прочем, и многие другие природные явления.

С физической точки зрения волна — это возбуждение среды, которое распространяется с переносом энергии, но без переноса массы. Другими словами, волны — это пространственное чередование максимумов и минимумов любой физической величины, например — плотности вещества или его температуры.

Охарактеризовать параметры волны (в том числе и звуковой) можно через ее длину, частоту, амплитуду и период колебания.

Рассмотрим параметры волны более подробно:

Максимумы и минимумы физической величины можно условно представить в виде гребней и впадин волны.

Длиной волны называют расстояние между этими гребнями или между впадинами. Поэтому, чем ближе находятся друг к другу гребни — тем меньше длина волны и тем выше ее частота, чем гребни дальше друг от друга — тем длина волны выше и наоборот — тем ниже ее частота.

Еще один важный параметр — амплитуда колебания, или степень отклонения физической величины от ее среднего значения.

Все эти параметры связаны друг с другом (для каждой взаимосвязи есть точное математическое описание в виде формул, но приводить их здесь мы не будем, поскольку наша задача — понять основной принцип, а описать его с физической точки зрения можно всегда). Важна каждая из характеристик, но чаще всего Вам придется слышать именно о частоте ультразвука.

Ваш УЗИ аппарат предоставляет плохое качество визуализации? Оставьте заявку на вызов инженера прямо на сайте и он проведет бесплатную диагностику и настроит Ваш УЗИ сканер

Звук высокой частоты: Как вызвать несколько тысяч колебаний в секунду

Существует несколько способов получить ультразвук, но чаще всего в технике используются кристаллы пьезоэлектрических элементов и основанный на их применении пьезоэлектрический эффект: природа пьезоэлектриков позволяет генерировать звук высокой частоты под воздействием электрического напряжения, чем выше частота напряжения, тем быстрее (чаще) начинает вибрировать кристалл, возбуждая высокочастотные колебания в окружающей среде.

Оказавшись в поле высокочастотных звуковых колебаний, пьезокристалл напротив начинает генерировать электроэнергию. Включив такой кристалл в электрическую цепь и определенным образом обрабатываю получаемые с него сигналы мы можем формировать изображение на дисплее УЗИ-аппарата.

Но чтобы этот процесс стал возможным, необходимо дорогое и сложно организованное оборудование.

Несмотря на десятки и даже сотни взаимосвязанных компонентов УЗИ сканер можно условно разделить на несколько основных блоков, участвующих в преобразовании и передаче различных видов энергии.

Читайте также:  Забеременеть с эрозией шейки матки

Все начинается с источника питания, способного поддерживать высокое напряжение заранее заданных значений. Затем, через множество вспомогательных блоков и под постоянным контролем специального программного обеспечения сигнал передается на датчик, основным элементов которого является пьезокристаллическая головка. Она преобразует электрическую энергию в энергию ультразвуковых колебаний.

Через акустическую линзу, сделанную из особых материалов и согласующий гель ультразвуковая волна попадает в тело пациента.

Как и любая волна, ультразвук имеет свойство отражаться от встречающейся на его пути поверхности.

Далее волна проходит обратных путь через различные ткани человеческого тела, акустический гель и линзу она попадает на пьезокристаллическую решетку датчика, которая преобразует энергию акустической волны в электрическую энергию.

Принимая и правильным образом интерпретируя сигналы с датчика мы можем моделировать объекты, находящиеся на различной глубине и недоступные человеческому глазу.

Принцип построения изображения на основе данных ультразвукового сканирования

Рассмотрим как именно полученная информация помогает нам в построении изображения на УЗИ сканере. В основе этого принципа лежит различный акустический импеданс или сопротивление газообразных, жидких и твердых сред.

Другими словами, кости, мягкие ткани и жидкости нашего тела пропускают и отражают ультразвук в различной степени, частично поглощая и рассеивая его.

На самом деле весь процесс исследования можно разбить на микропериоды, и лишь малую часть каждого периода датчик испускает звук. Остальное время уходит на ожидание ответа. При этом время межу передачей и получением сигнала напрямую переводится в расстояние от датчика до “увиденного” объекта.

Информация о расстоянии до каждой точки помогает нам построить модель изучаемого объекта, а также используется для измерений, необходимых при ультразвуковой диагностике. Данные кодируются цветом — в результате мы получаем на экране УЗИ необходимое нам изображение.

Чаще всего это Черно-белый формат, поскольку считается, что к оттенкам серого наш глаз более восприимчив и с большей точностью. увидит разницу в показаниях, хотя в современных аппаратах используется и цветное представление, например, для исследования скорости кровотока, и даже звуковое представление данных. Последнее вместе с видеорядом в допплеровских режимах помогает поставить диагноз более точно и служит дополнительным источником информации.

Но Вернемся обратно к построению простейшего изображения и рассмотрим подробнее три случая:

Примеры простейших изображений будем изучать на основе B-режима. Визуализация костной ткани и других твердых образований представляет из себя светлые участки (в основном — именно белого цвета), поскольку от твердых поверхностей звук отражается лучше всего и почти в полном объеме возвращается к датчику.

В качестве примера мы можем отчетливо видеть белые области — камни в почках пациента.

Визуализация жидкости или пустот напротив представлена черными участками на снимке, поскольку не встречая преград звук проходит дальше в тело пациента и мы не получаем никакого ответа

Мягкие ткани, как например, структура самой почки будут представлены областями с различной градацией серого цвета. Именно от качества визуализации таких объектов и будет во многом зависеть точность диагноза и здоровье пациента.

Итак сегодня мы с Вами узнали о том, что такое ультразвук и как он используется в УЗИ-сканерах для исследования органов человеческого тела.

Если на Вашем УЗИ аппарате плохое качество изображения, обращайтесь в наш сервисный центр. Инженеры ERSPlus с большим опытом и высокой квалификацией всегда готовы Вам помочь

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Медицина
0 комментариев
No Image Медицина
0 комментариев
No Image Медицина
0 комментариев
Adblock detector