No Image

Щелочь нейтрализует кислоту

СОДЕРЖАНИЕ
0 просмотров
10 марта 2020

NaCl + H2O>>>»> HCl + NaOH ⟶ NaCl + H 2 O <displaystyle <ce NaCl + H2O>>> NaCl + H2O>>>"/>

В сокращенном ионном виде уравнение записывают так:

H2O>>>"> H + + OH − ⟶ H 2 O <displaystyle <ce H2O>>> H2O>>>"/>

Тем не менее, существуют также и эндотермические реакции нейтрализации, например, реакция гидрокарбоната натрия (пищевой соды) и уксусной кислоты.

К понятию нейтрализации также могут относиться реакции сильной кислоты с карбонатами, так как в результате такой реакции получается соль и угольная кислота, которая относится к слабым кислотам (не создает полноценную кислотную среду, не вступает в реакции, и слабо диссоциирует) а также, к нестабильным, поэтому разлагается на углекислый газ и воду — два нейтральных вещества (оксида).

Примеры [ править | править код ]

Взаимодействие слабой кислоты и сильного основания:

Na2SO3 + 2H2O>>>"> H 2 SO 3 + 2 NaOH ⟶ Na 2 SO 3 + 2 H 2 O <displaystyle <ce

Na2SO3 + 2H2O>>> Na2SO3 + 2H2O>>>"/>

Взаимодействие слабой кислоты и слабого основания:

Cu(CH3COO)2 + 2H2O>>>"> 2 CH 3 COOH + Cu ( OH ) 2 ⟶ Cu ( CH 3 COO ) 2 + 2 H 2 O <displaystyle <ce <2CH3COOH + Cu(OH)2 ->Cu(CH3COO)2 + 2H2O>>> Cu(CH3COO)2 + 2H2O>>>"/>

Взаимодействие сильной кислоты с сильным основанием:

KNO3 + H2O>>>"> HNO 3 + KOH ⟶ KNO 3 + H 2 O <displaystyle <ce KNO3 + H2O>>> KNO3 + H2O>>>"/>

Взаимодействие слабой кислоты с карбонатом или гидрокарбонатом:

CH3COOK + H2CO3 -> CH3COOK + H2O + CO2 ^>>>"> CH 3 COOH + KHCO 3 ⟶ CH 3 COOK + H 2 CO 3 ⟶ CH 3 COOK + H 2 O + CO 2 ↑ <displaystyle <ce CH3COOK + H2CO3 -> CH3COOK + H2O + CO2 ^>>> CH3COOK + H2CO3 -> CH3COOK + H2O + CO2 ^>>>"/>

2C2H5COONa + H2CO3 -> 2C2H5COONa + H2O + CO2 ^>>>"> 2 C 2 H 5 COOH + Na 2 CO 3 ⟶ 2 C 2 H 5 COONa + H 2 CO 3 ⟶ 2 C 2 H 5 COONa + H 2 O + CO 2 ↑ <displaystyle <ce <2C2H5COOH + Na2CO3 ->2C2H5COONa + H2CO3 -> 2C2H5COONa + H2O + CO2 ^>>> 2C2H5COONa + H2CO3 -> 2C2H5COONa + H2O + CO2 ^>>>"/>

Применение [ править | править код ]

Нейтрализация лежит в основе ряда важнейших методов титриметрического анализа. Также реакцию нейтрализации используют при проливе кислоты или щелочи (соответственно нейтрализуют содой (слабым основанием) или уксусом (слабой кислотой)).

Агрегатор советов и знаний в сети

Щелочь в различных видах используют не только в химической промышленности. Она применяется при очистке различных поверхностей, дезинфекции и т. д. Но при обращении с ней надо соблюдать осторожность, чтобы не получить ожог.

Чем отличается кислота от щелочи?

Эти два вещества являются антиподами. Взаимодействие щелочи и кислоты приводит к образованию воды и взаимному уничтожению друг друга. При этом реакция проходит достаточно бурно, с шипением и повышением температуры среды взаимодействия.

Щелочь, в отличие от кислоты, опаснее для кожи человека. Хотя многие полагают, что все наоборот. Щелочь быстрее образует сильный ожог за счет глубокого проникания в кожу, к тому же смыть ее непросто.

Определить, какое вещество находится в емкости, можно даже без специального оборудования. Достаточно приобрести лакмусовую полоску. Она обладает особым составом, который реагирует на кислотные и щелочные среды. Опущенный в кислоту лакмус станет красным , а в щелочной среде обретет синий оттенок.

Что будет, если выпить щелочь?

У выпившего щелочь человека наблюдается следующая симптоматика:

  1. Ожог рта. Мягкие ткани отекают и приобретают красный цвет. Человек страдает от сильной боли. Постепенно отеки преобразуются в язвы;
  2. Появляется жажда. Во рту долго стоит металлический привкус;
  3. Боль в области груди. Ее интенсивность зависит от концентрации выпитой щелочи;
  4. Сильная рвота с вкраплениями крови. Связано это с тем, что щелочь повреждает внутренние сосуды;
  5. Риск асфиксии из-за интенсивной рвоты или деформированных пищеводных тканей;
  6. Состояние шока. Если концентрация щелочи высока, то болевой симптом приводит к исступлению человека, он перестает разумно мыслить и порой даже не в состоянии вызвать медиков;
  7. Спустя какое-то время после первичных симптомов наступает кровавый понос.

Анализируя случаи отравления щелочью, врачи пришли к выводу, что желудок может вовсе не пострадать. Ведь при взаимодействии выпитой щелочи с кислотной средой желудка происходит нейтрализация первой.

Но если концентрация вещества достаточно высока, то есть вероятность перфорации пищевода, то есть образования в нем отверстия.

Даже употребление небольших доз щелочных растворов чревато осложнениями, хотя поначалу человек может отделаться слабовыраженными симптомами. Поэтому никакого самолечения, только оперативное обращение к врачу.

Также специалисту нужно сообщить название вещества, ставшее причиной отправления. Это поможет сразу подобрать курс лечения и не тратить время на дополнительные обследования.

Часто впавшие в шоковое состояние пострадавшие совершают ряд опасных ошибок:

  1. Вызывают рвоту. Она в несколько раз повышает риск повреждения пищевода. Ведь щелочная жидкость из желудка вновь пойдет назад по тому же пути, что попала внутрь;
  2. Употребляют слабительные. Только врач может решить, насколько целесообразен тот или иной метод детоксикации;
  3. Пьют раствор лимонной кислоты. Эта ошибка связана с тем, что люди имеют общие представления о нейтрализации щелочи кислотой. Но то, что актуально для бытового применения, никак не поможет при отравлениях. Кислотный раствор может дать лишь дополнительную нагрузку на отравленный организм.

Особенности химического ожога

Ожог щелочью чаще всего приводит к опасным осложнениям. К примеру, некоторые другие агрессивные вещества сразу вступают в реакцию с кожным покровом. Он разъедается, но зато основная часть химического средства не попадает глубже.

С щелочью все иначе. Она может не образовать ожоговой корки и быстро проникает в глубокие слои кожи. На месте взаимодействия щелочи и кожи появляется рыхлый струп светлого оттенка. Поврежденные ткани отделяются медленно, что осложняет заживление. Это также повышает риск появления на месте щелочных ожогов рубцов.

Когда химическое средство попадает на кожу, то появляется:

  • Раздражение;
  • Отек;
  • Покраснение;
  • Нарастающая боль, становящаяся невыносимой в случае ожога щелочью высокой концентрации;
  • Онемение.

В некоторых случаях пострадавшие говорят о том, что появлялось ощущение, будто их кожа «мыльная».

Если концентрация щелочи была слабой и она воздействовала на кожу недолго, то человек отделается поверхностным ожогом. Кожа станет слегка бордовой, появится тупая боль и жжение.

В тяжелых случаях при повреждениях глубоких слоев кожи под ней может образоваться гной. Это создает дополнительный риск воспалительного процесса.

Чем смыть щелочь?

В быту люди часто получают ожоги негашеной известью. Она как раз и представляет собой щелочь. Многие пострадавшие в этом случае инстинктивно пытаются смыть реагент обычной водой. Это не только не поможет, но еще больше усилит действие щелочи.

Если на кожу попала негашеная известь, то ее удаляют сухой салфеткой. Затем поврежденную кожу смазывают растительным маслом. Если воспаление сильное и вызывает острую боль, то надо обратиться к медикам.

Другие виды щелочей надо смывать прохладной водой. Чтобы эффективно избавиться от реагента, надо держать поврежденную кожу под струей около 15 минут.

Нельзя вытирать кожу полотенцем. На коже могут успеть образоваться рыхлые струпья, поэтому при трении кожа еще больше травмируется.

Элементарные правила безопасности

Все щелочные растворы должны находиться там, где до них не сможет добраться ребенок. Достаточно часто опасными реагентами случайно обливаются дети, которые пытались открыть интересные для них бутылочки с жидкостью. При этом недостаточно того, чтобы емкости были закрытыми, так как ребенок вполне может их разбить.

При работе с щелочными средствами следует надевать резиновые перчатки. Если вещество имеет резкий запах, то нужна защитная маска. Ведь даже вдыхание паров некоторых реагентов может вызвать отравление.

Чем нейтрализовать щелочь на коже?

Особенность щелочи заключается в том, что щелочь еще некоторое время может воздействовать на кожу, даже если следов самого вещества уже нет. Поэтому, когда пораженный участок кожи промыт водой, его следует обработать раствором уксуса. Данная кислота прекрасно нейтрализует остатки щелочи.

Если ожог небольшой, то после промывания водой и уксусом можно самостоятельно использовать различные лекарства, ускоряющие заживление. Подойдет недорогая мазь Левомеколь, которая оказывает противомикробное действие и устраняет воспаление.

Если появилась гноящаяся рана, то поможет Левосин. Мазь также усиливает регенерационные процессы кожи.

Важно отметить, что использование препаратов актуально лишь в случае отсутствия осложнений. Кожа, которая долго не заживает после щелочного ожога или приобрела неестественный цвет, является сигналом для настороженности и квалифицированного лечения.

Выходит, что попадание щелочи на кожу может вызвать долго заживаемый ожог с осложнениями. Просто промыть рану и обработать ее бывает недостаточно. Особенно если концентрация вещества была высокой или повреждена значительная площадь кожи. В этом случае не обойтись без помощи врача.

Видео: срочная помощь при химическом ожоге

В этом ролике врач Ирина Васильченко расскажет, что нужно сделать в первую очередь при попадании на кожу щелочи, чем нейтрализовать ее:

Если на промышленном предприятии имеются только кислые или щелочные воды или невозможно обеспечить их взаимную нейтрализацию применяется реагентный метод нейтрализации. Этот метод наиболее широко используется для нейтрализации кислых сточных вод. Выбор реагента зависит от вида кислот, их концентрации, растворимости солей, образующихся в результате химической реакции.

Для нейтрализации минеральных кислот применяется любой щелочной реагент, чаще всего известь-пушонка, известковое молоко, карбонаты кальция и магния в виде суспензии. Эти реагенты сравнительно дешевы и общедоступны, но имеют ряд недостатков: обязательно устройство усреднителей перед нейтрализационной установкой; затруднительно регулирование дозы реагента по рН нейтрализованной водой; сложное реагентное хозяйство.

Скорость реакции между раствором кислоты и твердыми частицами суспензии относительно невелика и зависит от размеров частицы и растворимости образующегося в результате реакции нейтрализации соединения. Поэтому окончательная активная реакция устанавливается не сразу, а по истечении некоторого времени – 10-15 мин. Сказанное выше относится к сточным водам, содержащим сильные кислоты (H2SO4, H2SO4), кальциевые соли которых труднорастворимы в воде.

При нейтрализации сточных вод, содержащих серную кислоту (H2SO4), реакция в зависимости от применяемого реагента протекает по уравнениям:

H2SO4+Ca (OH)2 = CaSO4+2H2O,

Образующийся в результате нейтрализации сульфат кальция (гипс) кристаллизуется из разбавленных растворов в виде CaSO4·2H2O. Растворимость этой соли при температуре 0-40 0С колеблется от 1,76 до 2,11 г/л.

При более высокой концентрации сульфат кальция выпадает в осадок, поэтому при нейтрализации сильных кислот, кальциевые соли которых труднорастворимы в воде, необходимо устраивать отстойники-шламонакопители. Существенным недостатком метода нейтрализации серной кислоты известью является образование пресыщенного раствора гипса (коэффициент пресыщения может достигать 4-6), выделение которого из сточной воды может продолжаться несколько суток, что приводит к зарастанию трубопроводов и аппаратуры. Присутствие в сточных водах многих химических производств высокомолекулярных органических соединений усиливает устойчивость пресыщенных растворов гипса, поскольку эти соединения сорбируются на гранях кристаллов сульфата кальция и препятствуют их дальнейшему росту.

Для уменьшения коэффициента пресыщения используется метод рециркуляции образующегося в результате нейтрализации осадка сульфата кальция. Концентрация ионов кальция в сточной воде уменьшается при увеличении дозы рециркулирующего осадка: продолжительность перемешивания этой воды должна быть не менее 20-30 мин. Для уменьшения зарастания трубопроводов, по которым транспортируются нейтрализованные известью сернокислотные стоки, применяют методы промывки, увеличивают скорость транспортирования, а также заменяют металлические трубопроводы на пластмассовые.

Поскольку в кислых и щелочных сточных водах практически всегда присутствуют ионы тяжелых металлов, то дозу реагентов следует определять с учетом выделений в осадок тяжелых металлов.

Количество реагента, необходимого для нейтрализации сточных вод определяется по формуле

где k – коэффициент запаса расхода реагента по сравнению с теоретическим k = 1,1 – для известкового молока, k = 1,5 – для известкового теста и сухой извести; В – количество активной части в товарном продукте, %; Q – количество сточных вод подлежащих нейтрализации, м3; а – расход реагента для нейтрализации (табл. 1.7), г/кг

Расход реагентов для нейтрализации 100 % кислот и щелочей
Щелочь, кг Серная кислота Соляная кислота Азотная кислота Уксусная кислота
Известь:

гашеная

0,56/1,79

0,76/1,32

0,77/1,3

1,01/0,99

0,46/2,2

0,59/1,7

0,47/2,15

0,62/1,62

Сода:

каустическая

1,08/0,93

0,82/1,22

1,45/0,69

1,1/0,91

0,84/1,19

0,64/1,57

0,98/1,14

0,67/1,5

Аммиак 0,35/2,88 0,47/2,12 0,27/3,71 –

При нейтрализации кислых и щелочных сточных вод содержащих соли тяжелых металлов, количество реагента будет определяться по формуле

где С1, С2. Сn – концентрации металлов в сточных водах, кг/м; b1, b2. bn, – концентрации реагентов, требуемых для перевода металла из растворенного состояния в осадок (табл. 1.8), кг/кг.

Расход реагентов, требуемых для удаления металлов

Металл Реагент СаО Реагент Са(ОН)2 Реагент Na2CO3 Реагент NaOH
Цинк 0,85 1,13 1,6 1,22
Никель 0,95 1,26 1,8 1,36
Медь 0,88 1,16 1,66 1,26
Железо 1 1,32 1,9 1,43
Свинец 0,27 0,36 0,51 0,38

Например, при нейтрализации гашеной известью сточных вод, поступающих после травления черных металлов серной кислотой происходят следующие реакции:

На основании приведенных выше реакций или данных в табл. 1.7 и 1.8, а также по содержанию серной кислоты и железа в отработанных травильных растворах можно определить количество гашеной извести, необходимой для нейтрализации кислых сточных вод и осаждения железа

где А – содержание серной кислоты, кг/м3; С – содержание железа, кг/м3.

Количество сухого вещества, которое образуется при нейтрализации 1м3 сточной воды, содержащей свободную серную кислоту и соли тяжелых металлов, определяется по формуле

где М – масса сухого вещества, кг; В – содержание активного вещества в используемой извести, %; х1, х2 – количество активного вещества, необходимое соотвественно для осаждения металла и для нейтрализациии свободной серной кислоты, кг; х3 – количество образующихся гидроксидов металлов, кг; у1, у2 – количество сульфата кальция, образующиеся соответственно при осаждении металла и при нейтрализации свободной серной кислоты, кг.

Если значение третьего члена в приведенной формуле отрицательно, то он не учитывается.

Объем осадка, образующегося при нейтрализации сточной воды можно найти по уравнению

где Wвл – влажность осадка, %.

Для нейтрализации кислых вод могут быть использованы: NaOH, КОН, Na2CO3. NH4OH (аммиачная вода), СаСО3. доломит (СаСО3. MgСО3 ) цемент. Однако наиболее дешевым реагентом является гидроксид кальция (известковое молоко) с содержанием активной извести Са(ОН)2 5-10 %. Соду и гидроксид натрия следует использовать, если они являются отходами производства. Иногда для нейтрализации применяют различные отходы производства. Например, шлаки сталеплавильного, феррохромового и доменного производств используют для нейтрализации вод, содержащих серную кислоту.

Реагенты выбирают в зависимости от состава и концентрации кислой сточной воды. При этом учитывают, будет ли в процессе образовываться осадок или нет. Различают три вида кислотосодержащих сточных вод: 1) воды, содержащие слабые кислоты (Н2СО3, СН3СООН); 2) воды, содержащие сильные кислоты (НСl, HNO3). Для их нейтрализации может быть использован любой названный выше реагент. Соли этих кислот хорошо растворимы в воде; 3) воды, содержащие серную и сернистую кислоты. Кальциевые соли этих кислот плохо растворимы в воде и выпадают в осадок.

Известь для нейтрализации вводят в сточную воду в виде гидроксида кальция (известкового молока; «мокрое» дозирование) или в виде сухого порошка («сухое» дозирование). Схема установки для нейтрализации кислых вод известковым молоком показана на рис. 1.49.

Для гашения извести используют шаровые мельницы мокрого помола, в которых одновременно происходят тонкое измельчение и гашение. Для смешения сточных вод с известковым молоком применяют гидравлические смесители различных типов: дырчатые, перегородчатые, вихревые, с механическими мешалками или барботажные с расходом воздуха 5-10 м3/ч на 1 м2 свободной поверхности.

При нейтрализации сточных вод, содержащих серную кислоту, известковым молоком в осадок выпадает гипс CaSO4·2H:2O. Растворимость гипса мало меняется с температурой. При перемещении таких растворов происходит отложение гипса на стенках трубопроводов и их забивка. Для устранения забивки трубопровода необходимо промывать их чистой водой или добавлять в сточные воды специальные умягчители, например гексаметафосфат. Увеличение скорости движения нейтрализованных вод способствует уменьшению отложений гипса на стенках трубопровода.

Для нейтрализации щелочных сточных вод используют различные кислоты или кислые газы. Метод реагентной нейтрализации кислых и щелочных сточных вод широко используется на предприятиях химической промышленности.

Читайте также:  Средства от импотенции после 50 ти лет
Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Медицина
0 комментариев
No Image Медицина
0 комментариев
No Image Медицина
0 комментариев
Adblock detector