No Image

Излучение b частиц это

СОДЕРЖАНИЕ
2 просмотров
10 марта 2020

Навигация по статье:

Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.

Что такое радиация

Для начала дадим определение, что такое радиация:

В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют — ионизирующее излучение или что чаще встречается радиоактивное излучение, или еще проще радиация. К ионизирующим излучениям относится так же рентгеновское и гамма излучение.

Радиация — это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.

Ионизация — это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.

Альфа, бета и нейтронное излучение — это излучения, состоящие из различных частиц атомов.

Гамма и рентгеновское излучение — это излучение энергии.

Альфа излучение

  • излучаются: два протона и два нейтрона
  • проникающая способность: низкая
  • облучение от источника: до 10 см
  • скорость излучения: 20 000 км/с
  • ионизация: 30 000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа излучение — это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

Нейтронное излучение

  • излучаются: нейтроны
  • проникающая способность: высокая
  • облучение от источника: километры
  • скорость излучения: 40 000 км/с
  • ионизация: от 3000 до 5000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Нейтронное излучение — это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

Бета излучение

  • излучаются: электроны или позитроны
  • проникающая способность: средняя
  • облучение от источника: до 20 м
  • скорость излучения: 300 000 км/с
  • ионизация: от 40 до 150 пар ионов на 1 см пробега
  • биологическое действие радиации: среднее

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Читайте также:  Может ли быть понос от ромашки

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

Гамма излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность: высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Гамма (γ) излучение — это энергетическое электромагнитное излучение в виде фотонов.

Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Основная опасность гамма излучения — это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения.

Рентгеновское излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность:высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Рентгеновское излучение — это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.

Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!

Сравнительная таблица с характеристиками различных видов радиации

характеристика Вид радиации
Альфа излучение Нейтронное излучение Бета излучение Гамма излучение Рентгеновское излучение
излучаются два протона и два нейтрона нейтроны электроны или позитроны энергия в виде фотонов энергия в виде фотонов
проникающая способность низкая высокая средняя высокая высокая
облучение от источника до 10 см километры до 20 м сотни метров сотни метров
скорость излучения 20 000 км/с 40 000 км/с 300 000 км/с 300 000 км/с 300 000 км/с
ионизация, пар на 1 см пробега 30 000 от 3000 до 5000 от 40 до 150 от 3 до 5 от 3 до 5
биологическое действие радиации высокое высокое среднее низкое низкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.

Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше "коэффициент k" тем опаснее действие определенного вида радиции для тканей живого организма.

Видео: Виды радиации

Альфа(а)-лучи — положительно заряженные ионы гелия (Не++), вылетающие из атомных ядер со скоростью 14 000—20 000 км/час. Энергия частиц составляет 4—9 MeV. а-излучение наблюдается, как правило, у тяжелых и преимущественно естественных радиоактивных элементов (радий, торий и др.). Величина пробега а-частицы в воздухе возрастает с увеличением энергии а-излучения.

Так, например, а-частицы тория (Th232), имеющие энергию 3,9в MeV, в воздухе пробегают 2,6 см, а а-частицы радия С с энергией 7,68 MeV имеют пробег 6,97 см. Минимальная толщина поглотителя, необходимая для полного поглощения частиц, называется пробегом этих частиц в данном веществе. Пробеги а-частиц в воде и ткани составляют величины 0,02—0,06 мм.

Читайте также:  Твердый шарик в губе

а-частицы поглощаются полностью листком папиросной бумаги или тонким слоем алюминия. Одним из важнейших свойств а-излучения является сильное ионизирующее действие. На пути движения а-частица в газах образует огромное количество ионов. Например, в воздухе при 15° и 750 мм давления одна а-частица дает 150 000—250000 пар ионов в зависимости от ее энергии.

Так, например,удельная ионизация в воздухе а-частиц от радона, имеющих энергию 5,49 MeV, составляет 2500 пар ионов на 1 мм пути. Плотность ионизации в конце пробега а-частиц возрастает, поэтому поражаемость клеток в конце пробега примерно в 2 раза больше, чем в начале пробега.

Физические свойства а-частиц определяют особенности их биологического действия на организм и способы защиты от этого вида излучения. Внешнее облучение а-лучами не представляет опасности, так как достаточно удалиться от источника на несколько (10—20) сантиметров или установить простейший экран из бумаги, ткани, алюминия и других обычных материалов, чтобы излучение было полностью поглощено.

Наибольшую опасность а-лучи представляют при попадании и отложении внутри организма радиоактивных а-излучающих элементов. В этих случаях происходит непосредственное облучение а-лучами клеток и тканей организма.

Бета(b)-лучи — поток электронов, выбрасываемых из атомных ядер со скоростью приблизительно 100 000—300 000 км/сек. Максимальная энергия р-частиц находится в пределах от 0,01 до 10 MeV. Заряд b-частицы по знаку и величине равен заряду электрона. Радиоактивные превращения типа b-распада широко распространены среди естественных и искусственных радиоактивных элементов.

b-лучи обладают значительно большей проникающей способностью Но сравнению с а-лучами. В зависимости от энергии b-лучей их пробег в воздухе составляет от долей миллиметра до нескольких метров. Так, пробег b-частиц с энергией 2—3 MeV в воздухе составляет 10—15 м, а в воде и ткани измеряется миллиметрами. Например, пробег b-частиц, Испускаемых радиоактивным фосфором (Р32) с максимальной энергией 1,7 MeV, в ткани равен 8 мм.

b-частица с энергией, равной 1 MeV, может образовать на своем пути в воздухе около 30 000 пар ионов. Ионизирующая способность b-частиц в несколько раз меньше, чем таковая а-частиц той же энергии.

Воздействие b-лучей на организм может проявляться как при внешнем, так и при внутреннем облучении, в случае попадания в организм активных веществ, излучающих b-частицы. Для защиты от b-лучей при внешнем облучении необходимо применение экранов из материалов (стекло, алюминий, свинец и др.). Интенсивность излучения можно снизить увеличением расстояния от источника.

Корпускулярные излучения – ионизирующие излучения, состоящие из частиц с массой, отличной от нуля.

Альфа-излучение – поток положительно заряженных частиц (ядер атомов гелия – 24Не), который движется со скоростью около 20000 км/с. Альфа-лучи образуются при радиоактивном распаде ядер элементов с большими порядковыми номерами и при ядерных реакциях, превращениях. Энергия их колеблется в пределах 4-9 (2-11) МэВ. Пробег a-частиц в веществе зависит от их энергии и от природы вещества, в котором они движутся. В среднем в воздухе пробег составляет 2-10 см, в биологической ткани – несколько микрон. Так как a-частицы массивны и обладают относительно большой энергией, путь их в веществе прямолинейный, они вызывают сильно выраженный эффект ионизации. Удельная ионизация составляет примерно 40000 пар ионов на 1 см пробега в воздухе (на всей длине пробега может создаваться до 250 тысяч пар ионов). В биологической ткани на пути в 1-2 микрона также создается до 40000 пар ионов. Вся энергия передается клеткам организма, нанося ему огромный вред.

Альфа-частицы задерживаются листом бумаги и практически не могут проникать через внешний (наружный) слой кожи, они поглощаются роговым слоем кожи. Поэтому a-излучение не представляет опасности до той поры, пока радиоактивные вещества, излучающие a-частицы, не попадут внутрь организма через открытую рану, с пищей или вдыхаемым воздухом – тогда они становятся чрезвычайно опасными.

Бета-излучение – поток b-частиц, состоящий из электронов (отрицательно заряженных частиц) и позитронов (положительно заряженных частиц), испускаемых атомными ядрами при их b-распаде. Масса β-частиц в абсолютном выражении равна 9,1х10-28 г. Бета-частицы несут один элементарный электрический заряд и распространяются в среде со скоростью от 100 тыс. км/с до 300 тыс. км/с (т.е. до скорости света) в зависимости от энергии излучения. Энергия b-частиц колеблется в значительных пределах. Это объясняется тем, что при каждом b-распаде радиоактивных ядер образующаяся энергия распределяется между дочерним ядром, b-частицами и нейтрино в разных соотношениях, причем энергия b -частиц может колебаться от нуля до какого-то максимального значения. Максимальная энергия лежит в пределах от 0,015-0,05 МэВ (мягкое излучение) до 3-13,5 МэВ (жесткое излучение).

Так как b-частицы имеют заряд, то под действием электрического и магнитного полей они отклоняются от прямолинейного направления. Обладая очень малой массой, b-частицы при столкновении с атомами и молекулами также легко отклоняются от своего первоначального направления (т.е. происходит сильное рассеяние их). Поэтому определить длину пути бета-частиц очень трудно – этот путь слишком извилистый. Пробег
b-частиц в связи с тем, что они обладают различным запасом энергии также подвергается колебаниям. Длина пробега в воздухе может достигать
25 см, а иногда и нескольких метров. В биологических тканях пробег частиц составляет до 1 см. На путь пробега влияет также плотность среды.

Читайте также:  Для выведения шлаков из организма

Ионизирующая способность бета-частиц значительно ниже, чем альфа-частиц. Степень ионизации зависит от скорости: меньше скорость – больше ионизация. На 1 см пути пробега в воздухе b-частица образует
50-100 пар ионов (1000-25 тыс. пар ионов на всем пути в воздухе ). Бета-частицы больших энергий, пролетая мимо ядра слишком быстро, не успевают вызвать такой же сильный ионизирующий эффект, как медленные бета-частицы. При потере энергии электрон захватывается либо положительным ионом с образованием нейтрального атома, либо атомом с образованием отрицательного иона.

Нейтронное излучение – излучение, состоящее из нейтронов, т.е. нейтральных частиц. Нейтроны образуются при ядерных реакциях (цепной реакции деления ядер тяжелых радиоактивных элементов, при реакциях синтеза более тяжелых элементов из ядер водорода). Нейтронное излучение является косвенно ионизируемым; образование ионов происходит не под действием самих нейтронов, а под действием вторичных тяжелых заряженных частиц и гамма-квантов, которым нейтроны передают свою энергию. Нейтронное излучение чрезвычайно опасно вследствие своей высокой проникающей способности (пробег в воздухе может достигать несколько тысяч метров). Кроме того нейтроны могут вызвать наведенную радиоактивность (в том числе и в живых организмах), превращая атомы стабильных элементов в их радиоактивные изотопы. От нейтронного облучения хорошо защищают водородсодержащие материалы (графит, парафин, вода и т.д.).

В зависимости от энергии различают следующие нейтроны:

1. Сверхбыстрые нейтроны с энергией в 10-50 МэВ. Они образуются при ядерных взрывах и работе ядерных реакторов.

2. Быстрые нейтроны, энергия их превышает 100 кэВ.

3. Промежуточные нейтроны – энергия их от 100 кэВ до 1 кэВ.

4. Медленные и тепловые нейтроны. Энергия медленных нейтронов не превышает 1 кэВ. Энергия тепловых нейтронов достигает 0,025 эВ.

Нейтронное излучение используют для нейтронной терапии в медицине, определения содержания отдельных элементов и их изотопов в биологических средах и т.д. В медицинской радиологии используются главным образом быстрые и тепловые нейтроны, в основном используют калифорний-252, распадающийся с выбросом нейтронов со средней энергией в 2,3 МэВ.

Электромагнитные излучения различаются по своему происхождению, энергии, а также по длине волны. К электромагнитным излучениям относятся рентгеновское излучение, гамма-излучение радиоактивных элементов и тормозное излучение, возникающее при прохождении через вещество сильно ускоренных заряженных частиц. Видимый свет и радиоволны – тоже электромагнитные излучения, но они не ионизируют вещество, ибо характеризуются большой длинной волны (меньшей жесткостью). Энергия электромагнитного поля излучается не непрерывно, а отдельными порциями – квантами (фотонами). Поэтому электромагнитные излучения – это поток квантов или фотонов.

Рентгеновские излучения. Рентгеновские лучи были открыты Вильгельмом Конрадом Рентгеном в 1895 г. Рентгеновское излучение – это квантовое электромагнитное излучение с длинной волны 0,001-10 нм. Излучение с длинной волны, превышающей 0,2 нм условно называют «мягким» рентгеновским излучением, а до 0,2 нм – «жестким». Длина волны – расстояние, на которое излучение распространяется за один период колебания. Рентгеновское излучение, как и всякое электромагнитное излучение, распространяется со скоростью света – 300000 км/с. Энергия рентгеновского излучения обычно не превышает 500 кэВ.

Различают тормозное и характеристическое рентгеновское излучение. Тормозное излучение возникает при торможении быстрых электронов в электростатическом поле ядра атомов (т.е. при взаимодействие электронов с ядрами атомов). При прохождении электрона больших энергий вблизи ядра наблюдается рассеяние (торможение) электрона. Скорость электрона снижается, и часть его энергии испускается в виде фотона тормозного рентгеновского излучения.

Характеристические рентгеновские излучения возникают, когда быстрые электроны проникают вглубь атома и выбивают электрон из внутренних уровней (К, L и даже М). Атом возбуждается, а затем возвращается в основное состояние. При этом электроны из внешних уровней заполняют освободившиеся места во внутренних уровнях и при этом излучаются фотоны характеристического излучения с энергией, равной разности энергии атома в возбужденном и основном состоянии (не превышающем 250 кэВ). Т.е. характеристическое излучение возникает при перестроении электронных оболочек атомов. При различных переходах атомов из возбужденного состояния в невозбужденное, избыток энергии может также испускаться в виде видимого света, инфракрасных и ультрафиолетовых лучей. Так как рентгеновские лучи обладают малой длиной волн и меньше поглощаются в веществе, то они обладают большей проникающей способностью.

Гамма-излучение – это излучение ядерного происхождения. Оно испускается ядрами атомов при альфа и бета распаде природных искусственных радионуклидов в тех случаях, когда в дочернем ядре оказывается избыток энергии, не захваченный корпускулярным излучением (альфа- и бета-частицей). Этот избыток энергии мгновенно высвечивается в виде гамма-квантов. Т.е. гамма-излучения – это поток электромагнитных волн (квантов), который излучается в процессе радиоактивного распада при изменении энергетического состояния ядер. Кроме того, гамма-кванты образуются при антигиляции позитрона и электрона. По свойствам гамма-излучение близко к рентгеновскому излучению, но обладает большей скоростью и энергией. Скорость распространения в вакууме равняется скорости света – 300000 км/с. Так как гамма-лучи не имеют заряда, то в электрическом и магнитном полях не отклоняются, распространяясь прямолинейно и равномерно во все стороны от источника. Энергия гамма-излучения колеблется от десятков тысяч до миллионов электрон-вольт (2-3 МэВ), редко достигает 5-6 МэВ (так средняя энергия гамма-лучей, образующихся при распаде кобальта-60 равна 1,25 МэВ). В состав потока гамма-излучений входят кванты различных энергий. При распаде 131

Комментировать
2 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Медицина
0 комментариев
No Image Медицина
0 комментариев
Adblock detector